Repræsentativ prøveudtagning for minedrift.

M&W JAWO Prøveudtagning automatiseret og repræsentativt prøveudtagningsudstyr og komplette løsninger giver minedriftskunder de nødvendige data til deres efterforsknings- og minedriftsprocesser for at beslutte, hvor og hvordan de skal mine for at få mest muligt ud af forekomsten…

Læs mere

Jernmalm

Kul

Kobber

Repræsentativ prøveudtagning for metalraffinering og mineralforarbejdning.

M&W JAWO Prøveudtagning automatiserede og repræsentative prøveudtagningsmaskiner, udstyr og komplette løsninger giver kunder inden for metalraffinering og mineralforarbejdning repræsentative og ensartede prøver til kvalitetsanalyse…

Læs mere

Jern pellets

Ferrosilicium og silicium

Elektroskrot til ædelmetaller

Repræsentativ prøveudtagning og instrumenter til kraftværker.

M&W JAWO Prøveudtagning ekstraktionsprøvetagere, online-instrumenter og brændstofprøvetagningsløsninger til kraft- og varmeværker giver kunderne vigtige realtidsdata ved…

Læs mere

Biomassekraft- og varmeværker

Kulfyrede kraftværker

Flue- og Bundaske

Repræsentativ prøveudtagning for cement og kalksten.

M&W JAWO Prøveudtagning automatiserede og repræsentative prøveudtagningsmaskiner, udstyr og komplette løsninger giver kunder i cement- og kalkstensindustrien repræsentative og ensartede prøver til kvalitetsanalyse…

Læs mere

Kalksten

Cement

Klinker

Repræsentativ prøveudtagning for gødning.

M&W JAWO Prøveudtagning automatiserede og repræsentative prøveudtagningsmaskiner, udstyr og komplette løsninger giver kunder i gødningsindustrien repræsentative og ensartede prøver til kvalitetsanalyse…

Læs mere

Potteaske

Fosfatgødning

Urinstof

Repræsentativ prøveudtagning for olie og gas.

M&W JAWO Prøveudtagning automatiserede og repræsentative prøveudtagningsmaskiner, udstyr og komplette løsninger giver kunder inden for olie og gas repræsentative og ensartede prøver til kvalitetsanalyse…

Læs mere

Pet cola

Pelletiseret svovl

Olieskifer

Minedrift

M&W JAWO Prøveudtagning automatiseret og repræsentativt prøveudtagningsudstyr og komplette løsninger giver minekunder de nødvendige data til deres efterforsknings- og minedriftsprocesser for at beslutte, hvor og hvordan de skal mine for at få mest muligt ud af forekomsten.

 

Repræsentativ prøveudtagning til yderligere analyse sikrer, at du undgår:

  • Lavere produktkvalitet end forventet
  • Får ikke betalt for den rigtige malmkvalitet
  • Problemer med produktprognoser
  • Ineffektive processer som følge af uventede materialeegenskaber
  • Overdreven brug af malm af høj kvalitet og bedre kontrol over minens levetid

 

M&W JAWO Prøveudtagning har siden 1980’erne leveret automatiserede prøvetagningsløsninger til mineindustrien til en række af minekunder som Glencore, LKAB, AngloGold Ashanti, Severstal, Baffinland, Boliden og Rio Tinto til materialer som f.eks. jernmalm, kobber, kobberkoncentrat, guld, titanium, kul, bauxit, potaske og nikkel, inklusive den største automatiserede prøvetagningsløsning, der nogensinde er installeret i Europa for jernmalm.

 

M&W JAWO Prøveudtagning Brochure

Show less

Metalraffinering og mineralforarbejdning

 

M&W JAWO Prøveudtagning automatiserede og repræsentative prøveudtagningsmaskiner, udstyr og komplette løsninger giver kunder inden for metalraffinering og mineralforarbejdning repræsentative og ensartede prøver til kvalitetsanalyse.

 

Indhentning af repræsentative prøver af det samlede parti er afgørende, da der ellers ikke er nogen mening i at have foretaget betydelige investeringer i laboratorieudstyr og analytiske kompetencer.

 

Ud fra nøjagtige og præcise data for det samlede parti er kunder inden for mineralforarbejdning og metalraffinering i stand til at:

 

  • Bekræft, om de modtager eller sælger produkter, der opfylder kontraktkravene
  • Overvåge og optimere produktions- og kvalitetskontrolprocessen
  • Forbedre blande- og blandingsoperationer for at opnå bedre slutprodukter

 

M&W JAWO Prøveudtagning har siden 1980’erne leveret automatiserede prøvetagningsløsninger til metalraffinerings- og mineralforarbejdningsindustrien til en lang række kunder som Norsk Hydro, Arcelor Mittal, SSAB, Ma’aden, Outokumpu, Voest Alpine, Umicore, Boliden, Glencore Recycling , Posco og Alcoa for materialer som f.eks. jern, stål, aluminium, ferrosilicium, zink, malm, kobber, kobberkoncentrat, guld, nikkel og ædelmetaller fra genanvendelige materialer.

 

M&W JAWO Prøveudtagning Brochure

Show less

Kraft- og Varmeværker

 

M&W JAWO Prøveudtagning ekstraktionsprøvetagere, onlineinstrumenter og brændstofprøvetagningsløsninger til kraft- og varmeværker giver kunderne vigtige realtidsdata ved at:

 

  • Måling af brændstofmasseflowet, så operatøren kan optimere forbrændingsprocessen
  • Indhentning af isokinetiske og repræsentative brændstofstøvprøver til partikelstørrelsesanalyse til klassificeringsoptimering, mølletilstandsbestemmelse og brændselsegenskaber
  • Tilbyder online- og realtidsmåling af uforbrændt kulstofniveauer (UBC) i aske for bedre forbrænding, reduceret brændstofforbrug og miljøomkostninger
  • Verifikation af, at modtaget brændsel (kul eller biomasse) opfylder kontraktkravene (f.eks. for fugt, askeindhold og partikelstørrelsesfordeling)
  • Overvågning og optimering af forbrændingseffektiviteten generelt

 

M&W JAWO Prøveudtagning har siden 1980’erne opfundet adskillige banebrydende ekstraktionsprøvetagere og online-instrumenter til el- og varmesektoren såsom Pulverized Fuel Sampler (rotoprobe) til isokinetisk prøvetagning samt verdens første online instrument til måling af uforbrændt kulstofniveauer i flyveaske.

 

Mere end 200+ kraftværker i 5 kontinenter har installeret M&W JAWO prøveudtagningsudstyr til kul, forskellige slags biomasse og aske.

 

Utilities omfatter Uniper, Drax, Ørsted, Fortum, Alliant, BHEL, NTPC, EdF, Enel, Engie og Iberdrola.

 

M&W JAWO Prøveudtagning Brochure

Show less

M&W JAWO Prøveudtagning automatiserede og repræsentative prøveudtagningsmaskiner, udstyr og komplette løsninger giver kunder i cement- og kalkstensindustrien repræsentative og ensartede prøver til kvalitetsanalyse.

 

Kunder bruger vores udstyr til prøveudtagning af kalksten, pulver, klinker, slagger og færdig cement. Typiske prøveudtagningsfokusområder omfatter: Rå og færdige produkter, ved loadout og depotoverførsel.

 

Repræsentativ prøveudtagning til yderligere analyse giver dig mulighed for at:

 

  • Få kalksten med de egenskaber, du forventer i form af renhed (CaCO3 og karbonater), uønskede urenheder (K2O og MgO), kornstørrelse, reaktivitet efter sintring (hurtig eller langsom) og potentiale for hård forbrænding.
  • Find den rigtige sammenhæng mellem egenskaber af kalksten, kalcineringsparametre og slutegenskaber af hydreret kalk
  • Bestemmelse af styrken af klumpkalk
  • Til cement og beton til bestemmelse af slibeevne (støvniveauer), uønskede tilsætningsstoffer (f.eks. alkaliske forbindelser, krom, krystallinsk silica), vand/cement-forhold osv.

 

M&W JAWO Prøveudtagning har leveret prøvetagningsløsninger til mere end 350+ forskellige projekter i cement-, cementklinker- og kalkstensindustrien siden midten af 1980’erne. Kunder har købt alt fra komplette prøveudtagnings- og klargøringsanlæg, on-stream-systemer samt individuelle prøveudtagningsinstrumenter såsom skruetransportører, skruetransportører med blandetanke og luftslidsprøvetagere samt prøveudtagningsudstyr til materialehåndtering som knusere, transportører osv.

 

Kunderne omfatter LafargeHolcim, Heidelberg Cement, Cemengal, Cemex, Boral, Siam Cement, Aalborg Portland og FLS.

 

M&W JAWO Prøveudtagning Brochure

Show less

M&W JAWO Prøveudtagning automatiserede og repræsentative prøveudtagningsmaskiner, udstyr og komplette løsninger giver kunder i gødningsindustrien repræsentative og ensartede prøver til kvalitetsanalyse.

 

Ud fra nøjagtige og præcise data for det samlede parti er kunder i gødningsindustrien i stand til at:

 

  • Kontroller, om de modtager eller sælger produkter, der opfylder kontraktkrav med hensyn til kvalitet, homogenitet og partikelstørrelse
  • Overvåge og optimere produktions- og kvalitetskontrolprocessen
  • Forbedre blande- og blandingsoperationer for at opnå bedre slutprodukter

 

M&W JAWO Prøveudtagning har siden 1990’erne leveret automatiserede prøveudtagningsløsninger til gødningsindustrien til virksomheder som K+S Kali, K+S Potash Canada, Yara, Norsk Hydro, OCP, El-Nasr Co. For Intermediate Chemicals og Kemira for kaliumchlorid, urinstof, fosfatgødning og andre mineralske gødninger fra magnesium og svovl.

 

M&W JAWO Prøveudtagning Brochure

Show less

Olie & Gas

 

M&W JAWO Prøveudtagning automatiserede og repræsentative prøveudtagningsmaskiner, udstyr og komplette løsninger giver kunder inden for olie og gas repræsentative og ensartede prøver til kvalitetsanalyse.

 

Kunder bruger vores løsninger til at bestemme de fysiske egenskaber og kemiske bestanddele for primære og sekundære produkter såsom olieskifer, grøn pet koks, pelletiseret svovl.

 

Olie- og gaskunder/raffinaderier, der har købt vores automatiserede prøveudtagningssystemer, omfatter Petrobas, Gazprom Neft og Saudio Aramco.

 

Ydermere betjener Mark & Wedell en række kunder i olie- og gassektoren med Annulus Pressure Relief System, der muliggør sikker og enkel stimulering af olie- og gasbrønde op til 10.000 psi baseret på let udskiftelig burst disc-teknologi.

 

Kunderne omfatter Aker BP, Shell, BP, Mærsk Oil & Gas (nu Total), Itacha Energy og Hess samt olieserviceselskaber som Schlumberger og Stimwell Oil Services.

 

M&W JAWO Prøveudtagning Brochure

Show less

Vi introducerer M&W JAWO Prøveudtagning .

Prøveudtagning Gjordt Enkel

M&W JAWO Prøveudtagning tilbyder kunderne et komplet udvalg af automatiserede og tilpassede maskiner, instrumenter og komplette systemer til repræsentativ prøveudtagning af bulkmateriale, pulver og støvpartikler til en bred vifte af industrier.

Derudover får du adgang til vores 35+ års erfaring gennem dialog med vores stikprøve af uddannede medarbejdere.

Indhentning af repræsentative prøver af det samlede parti inden analyse er altafgørende – ellers nytter det ikke meget at have foretaget betydelige investeringer i laboratorieudstyr og analytiske kompetencer.

 

Hvad er det for dig?

Ved at betjene vores automatiserede prøvetagningsløsninger får du pålidelig viden om egenskaberne af det materiale, du køber, sælger eller producerer, hvilket gør dig i stand til at:

 

  • Beregn det korrekte beløb eller den korrekte værdi for hvert parti materiale, du modtager eller leverer – for derved at reducere risikoen for enten overbetaling eller undersalg
  • Bekræft, at du modtager eller sælger produkter, der opfylder kontraktkravene
  • Overvåg og optimer din produktions- og kvalitetskontrolproces
  • Forbedre dine blande- og blandingsoperationer for at opnå bedre slutprodukter
  • Estimer typen og mængden af biprodukter fra dine forarbejdede eller fremstillede partier
  • Dokumenter miljøpåvirkningen og/eller forureningen fra din produktion
  • For kunder, hvor større eller dyre mængder materiale købes eller sælges, vil den økonomiske virkning af at sikre repræsentative og konsistente prøver være betydelig.
  • Ved at købe den rigtige prøvetagningsløsning vil du sandsynligvis spare mange penge.

M&W JAWO Prøveudtagning Brochure – English version

M&W JAWO Prøveudtagning Brochure – Spanish version

M&W JAWO Prøveudtagning Brochure – French version

M&W JAWO Prøveudtagning Brochure – Russian version (coming soon)

M&W JAWO Prøveudtagning Brochure – Dansk version (kommer snart)

 

Du vil være sikret prøveudtagningsløsninger, der producerer konsistente prøver til din kvalitetsanalyse – nøjagtigt og præcist repræsenterer det samlede parti, hvorfra det blev indsamlet.

 

Som et resultat får du upartiske og reproducerbare prøver til internationale råvarer såsom aluminium, aske, bauxit, biomasse, byggematerialer, calcium, cement og cementklinker, kul, koks, kobberkoncentrat, chromitmalm, elektroskrot, gødning, korn, granulater , jernmalm/sinter/pellets, guld, industripulver, brunkul, kalksten, tungt mineralsand, kvarts, platin, potteaske, stensalt, silicium og faste kemikalier.

 

M&W JAWO Sampling er en af ​​de globale pionerer inden for udvikling og produktion af automatiseret prøveudtagningsudstyr, instrumenter og hele systemløsninger siden 1982.

 

I 1999 købte Mark & ​​Wedell FLS JAWO Handling fra FLSmidth og fortsatte med at udvikle en række specifikke prøveudtagningsprodukter. I 2019 integrerede Mark & ​​Wedell “M&W Asketeknik” (ekstraktionsprøvetagere og instrumenter primært til el- og varmeindustrien) i M&W JAWO Sampling forretningsenheden.

 

M&W JAWO Prøveudtagningsudstyr og prøveudtagningssystemer fungerer i overensstemmelse med godkendte internationale materialestandarder såsom ISO, ASME, GOST, EN samt DS3077 (2013).

 

Alt prøveudtagningsudstyr og -løsninger sigter mod at overholde principperne i Theory of Sampling (TOS) og giver dig pålidelig viden om materialeegenskaberne for din prøve, såsom:

  • Content grade
  • Moisture content
  • Mineral proportions
  • Contamination
  • Hardness
  • Particle Size Distribution

 

Who else bought?

M&W JAWO Sampling has supplied more than 3,000 automated sampling solutions to more than 950 projects in 85+ countries within the mining, mineral processing & metals refining, oil & gas, power and heat generation, cement, fertilizer, recycling and waste handling, building materials, food and pharma sectors.

 

[Click here to see our full product range]

Vis mere

Contact information.

Jan Flemming Jørgensen (JFJ)

Jan Flemming Jørgensen

Sales Director

Bjarke Pålsson (BP)

Bjarke Pålsson

Co-CEO and Owner

Torben Ekvall (TEK)

Torben Ekvall

Co-CEO and Owner

950+ projects in 85+ countries around the world.

950+ projects in 85+ countries
3000+ units installed
970+ different customers

Selected Project References.

Recent

Additional Cases

JAWO Sampling Solutions and Product Overview.

M&W JAWO Sampling is building the bridge between the Theory Of Sampling (TOS) and specific sampling products or a complete multi-stage sampling system for any customer who requires fully automated and high-quality representative sampling-solution.

Our multi-stage sampling systems consists of several individual customized products which are engineered, constructed and positioned together. This ensures a solution which meets international standards or even exceed them.

JAWO Sampling Products: Secondary Samplers, dividers and splitters
JAWO Sampling Products: Particle Size Reduction
JAWO Sampling Products: Material Transfer Equipment
Control cabinets

Sampling made simple for 40 years.

Theory of sampling
Theory of sampling
Standards
Standards
Customised solutions
Customised solutions

Why representative sampling?

  • Why representative sampling? Klik for at læsemere

    Obtaining representative samples of the total lot before analysis is crucial – otherwise there is little point in having made significant investments in laboratory equipment and analytical competences.

     

    Representative samples are critical for correct decision making based on analytical data for industry, tradetechnology, science and regulatorsHowever, there is a complex way from heterogeneous materials in lots such as truck loads, railroad cars, shiploads, stockpiles and on conveyor belts (in the kg-ton range) to the very small aliquot (in g-µg range), which is the only material that is actually analysed.  

     

    Exactly how to get a documented representative analytical result across mass-reduction of up to six orders of magnitude is far from a direct materials’ handling issue. There are a number of specific principles and rules behind representativity as part of the Theory of Sampling (TOS)[1] 

     

    The concept of TOS was originally developed by Pierre Gy who identified eight sampling errors which represent everything that can go wrong in sampling, sub-sampling (sample mass reduction), sample preparation and sample presentation—due to heterogeneity and/or inferior sampling equipment design and performance.  

     

    During his 25 year career (1950-75) Pierre Gy worked out how to avoid committing such errors in the design, manufacture, maintenance and operation of sampling equipment and showed how their adverse impact on the total accumulated uncertainty could be reduced as much as possible when sampling in practice. He received two PhDs (in mineral processing and statistics) in the process[2]. Read more about TOS in the article by R.C.A. Minnitt and Kim H. Esbensen[3].

     

    The purpose of sampling is therefore to produce reliable small mass which is representative of the total mass of material from which it was collected i.e. to obtain a sample which accurately and precisely represents the total mass or lot. This primary sample is very often subject to further sub-sampling and sample preparation procedures, which ultimately produces an aliquot suitable for either laboratory analysis or physical testing. The type of testing or analysiis dependent on which characteristics are required for technological and industrial decision makingRegardless, the primary sampling is critical for the ultimate quality of the analytical results. 

     

    Figure 1. below shows the key results from Replication Experiments made at Elkem Metal, Canada, which showed that 35% of the total sampling variance (where mistakes can occur throughout the full sampling process) occured during the phase of primary sampling and 50% during the crushing phases i.e. 85% of the total sampling variance occurred before pulverization and laboratory  analysis.

     

    In other words: it is of extreme importance that you are in control of your primary and secondary sampling process before final analyzis. Otherwise you draw (wrong) conclusions from the non-representative samples.

     

    Figure 1. Replication Experiment at Elkem Metal – Canada.

    Source: https://www.spectroscopyeurope.com/sampling/revisiting-replication-experiment.

     

    For more about Replication Experiments, see Part 1 and Part 2 of The Replication Myth by Kim H. Esbensen et al[4][5].

     

    A specific sampling process can either be representative – or not. If a sampling process is not representative, the result is only extracted and undefined, mass-reduced lumps of material which do not represent the original lot; these are called specimens

     

    However, specimens are not worth analyzing, as they will not give valid information about the composition and physical characteristics of the lot. Only representative analytical aliquots can reduce the combined sampling-and-analysis errors to a desired minimum.

     

    Drawing the (wrong) conclusions from non-representative samples can have major negative production control and financial consequences when you buy or sell materials.

     

    And you might as well save the costs of laboratory hardware and analysts: Garbage In = Garbage Out.

    Sampling must be both accurate (unbiased) and precise (reproducible) at all stages throughout the sampling process. 

    Source: http://www.statisticalengineering.com/Weibull/precision-bias.html 

     

    A representative sampling process is critically dependent upon three factors: 

     

    1: Unbiased and precise sampling equipment – demand clear and understandable documentation from your supplier. M&W JAWO Sampling is at your disposal to help.

     

    2: TOS-informed sampling process design, installation and operation. Demand relevant documentation from your supplier. M&W JAWO Sampling is at your disposal to help.

     

    3: Process staff & supervisors must possess a minimum of TOS-competence. If this does not exist in-house, request training and documentation from your supplier. M&W JAWO Sampling is at your disposition to help. 

     

    [1] For background: “Introduction to the Theory and practice of sampling” by Kim H. Esbensen (IMPublicationsOpen 2020)

     

    [2] “Pierre Gy (1924–2015): the key concept of sampling errors” (Spectroscopy Europe/Asia 2018)

     

    [3] “Pierre Gy’s development of the Theory of Sampling: a retrospective summary with a didactic tutorial on quantitative sampling of one-dimensional lots” by R.C.A. Minnitt and Kim H. Esbensen, TOS Forum 7.

     

    [4] “The Replication Myth 1” by Kim H. Esbensen et al, NIR News

     

    [5] “The Replication Myth 2: Quantifying empirical sampling plus analysis variability” by Kim H. Esbensen et al, NIR News

    Klik for at læsemindre

  • How to do sampling? Klik for at læsemere

    Representative sampling must be both accurate (unbiased) and precise (reproducible). In order to be representative, a specific sampling process shall only be using equipment that is designed to eliminate (or reduce maximally) sampling bias and which simultaneously increases sampling precision as much as possible. Here is the short explanation why:

     

    All material sampling targets (lots) are heterogeneous, it is only a matter of degree. This means that different samples, even though extracted by the exact same protocol, will never be identical, which manifests itself as a basic, non-vanishing sampling variability. Heterogeneity is one of two major influential factors behind sampling variability (inaccuracy). The sampling process itself will also result in sampling error effects that add to the total sampling uncertainty. All sampling must therefore aim for maximum Total Sampling Error (TSE) reduction. In order to do this effectively, economically and with confidence, there are sampling equipment and process design principles which must be acknowledged and followed. These rules are codified in the Theory of Sampling (TOS).

     

    M&W JAWO Sampling is at your disposition to help.

     

    For homogeneous materials, there is no reason to worry about sampling – because any sample will be an exact representative sample of the lot (big/small).

     

    However, ALL materials – at all scales – visible, or not – are heterogeneous.

     

    Representative sampling is not as simple as buying a specific sampling tool (equipment) with which to sample any of the world’s materials. This will be futile. Despite many suppliers’ claim, there does not exist a “universal sampler” that will work for all materials and under all conditions because technological and industrial materials have very different compositional heterogeneities and other characteristics e.g. internal differences with respect to grain sizes , moisture, grain stickiness. But there exist professional solutions: most standard sampling equipment can be used in informed, TOS-compliant ways that can be made to work towards a state of “fit-for-purpose” representativity. This approach is called composite sampling.

     

     

    Representative sampling is about mastering the necessary and sufficient TOS principles with which to make rational choices regarding the appropriate type of sampling tool and sampling protocol for a specific task, for a specific material, under customer-specific conditions. It takes professional competence and relevant experience to get all this right.

     

    M&W JAWO Sampling is at your disposition to help.

    Klik for at læsemindre

  • Method, frequency and accuracy Klik for at læsemere

    The method and frequency by which samples are collected and the resulting sampling accuracy, i.e. how closely collected samples represent the true characteristics of the target lot, depend on the nature of the material, particularly its compositional and distributional heterogeneity.

     

    A homogeneous material would only require collection of a single sample in order to determine its characteristics accurately, whereas all heterogeneous materials with irregular particle size distribution and/or irregular constituent compositions, will require extraction of a sufficient number of small increments, which when combined into a composite sample, will be able to represent the total lot with an acceptable degree of accuracy. Increments must be collected from all spatial locations in the lot, with the number required critically depending on the material heterogeneity. TOS outlines the specific requirements that must be matched in order to be able to guarantee a specific threshold for fit-for-purpose heterogeneity.

     

    For this to be possible it is of fundamental importance that all increments in the lot have the same probability of being included in the final sample. This is the “golden rule” of sampling, called the Fundamental Sampling Principle (FSP). To achieve this most effectively, wherever it is possible, it is desirable to sample the lot while it is in a dynamic state, i.e. when the lot is moving on a conveyor belt or in a duct/pipe as a continuous stream. Professional sampling equipment (and professional samplers) shall be able to sample both stationary (e.g. truck, train or pile) as well as moving (dynamic) lots in a documentable representative manner.

     

    M&W JAWO Sampling is a specialist company, which has invested considerable time and practical efforts in understanding and combining mechanical & electrical design of individual machines/instruments/equipment and their interaction so as to match the materiel types sampled, with reference to relevant material standards and to the Theory of Sampling (TOS).

    Klik for at læsemindre

  • Material Properties Klik for at læsemere

    Correctly designed sampling equipment and a representative sampling plan is necessary in order to obtain reliable knowledge of the material properties which is essential for commercial, operational and technical characterization. These properties are:

     

    • Contents
    • Moisture content
    • Mineral proportions
    • Contamination
    • Hardness
    • Particle Size distribution

     

    A full sampling system solution takes care of the critically important primary sampling stage with an aim of attaining a fit-for-purpose representativity status. All subsequent sub-sampling stages comply with the same demands, ultimately delivering an analytical aliquot suitable for laboratory analysis.

    Material Properties

    Klik for at læsemindre

  • Practical benefits of representative sampling – “what’s in it for you” Klik for at læsemere

    By operating our automated sampling solutions you are getting reliable knowledge about the properties of the material you buy, sell or produce enabling you to:

     

    • Calculate the correct amount or value for each batch of material you receive or deliver – thereby reducing the risk of either overpaying or underselling
    • Confirm that you receive or sell products which meet contract requirements
    • Monitor and optimize your production and quality control process
    • Improve your mixing and blending operations to obtain better end-products
    • Estimate type and amounts of by-products from your processed or manufactured batches
    • Document the environmental impact and/or pollution from your production
    • For customers where larger or expensive quantities of material are bought or sold, the economic impact of ensuring representative and consistent samples will be substantial.
    • By buying the right sampling solution you are likely to save a lot of money.

     

    Note: It is important to resolve all potential issues related to primary sampling accuracy (sampling bias) before establishing a new, modifying or re-designing a specific sampling procedure. After this has been achieved, i.e. when a sampling procedure is developed or re-evaluated in combination with the continued use of all, or most of the sampling equipment recommended by M&W JAWO and for example checked by means of a full bias test or alternatively through a variographic or replicate analysis, the remaining final sampling uncertainty only has to deal with sampling precision.

     

    General M&W JAWO Sampling procedure (variations occur reflecting different material heterogeneities):

    1. Define the quality parameter(s) i.e. the analyses of interest
    2. Delineate and prepare the lot (geometry, total mass, accessibility)
    3. Select equipment matching appropriate sampling accuracy demands; fully representative or fit-for-purpose representativity
    4. Set the remaining sampling precision required (for example 20% rel.)
    5. Estimate primary sampling variability VI for the selected quality parameter(s), and establish the number of sampling unit’s (m) required to reach the desired precision level with a minimum number of increments (n)
    6. For process sampling, define sampling intervals in minutes for time basis sampling, or in kg for mass-based sampling
    7. Ascertain the material nominal top particle size in order to determine the appropriate increment mass
    8. Determine the number of increments to be aggregated into composite samples (which is to be further sub-sampled)
    9. Determine optimal sample division (sub-sampling) in order to deliver an analytical aliquot mass

    Klik for at læsemindre

  • Sampling precision and the number of increments Klik for at læsemere

    In all methods of sampling, sample preparation and analysis, errors are incurred, and the analytical results for any given parameter will deviate from the true value of that parameter. While the absolute deviation of a single result from the “true” value cannot be determined, it is possible to make an estimate of the sampling precision. This is the closeness with which the results of a series of measurements made on the same material agree among themselves, and the deviation of the mean of the results from an accepted reference value.

     

    The desired overall precision for a lot is normally agreed between the parties concerned. In principle it is possible to design a sampling scheme by which an arbitrary level of precision can be achieved.

     

    The overall precision can be estimated using Equation 1 where:

     

    • PL [%] is the estimated index of overall precision of sampling, sample preparation and testing for the lot;
    • VI is the primary increment variance;
    • VPT is the preparation and testing variance;
    • n is the number of increments per sub-lot;
    • m is the number of sub-lots in the lot.

     

    Equation 1:

    PL=2VIn+VPTm

     

    If no previous sampling data is available, assumptions have to be made about the variability in order to devise a sampling scheme. After implementation of the sampling scheme, the precision actually achieved for a particular lot by the devised scheme can be measured.

     

    If a given precision PL is required, the number of increments n and the number of sub-lots m can be found using Equation 2 and Equation 3 respectively. If necessary, one of the values (n or m) is fixed and another is recalculated until a convenient combination is achieved.

     

    Equation 2:

    n = 4VImPL24VPT

     

    Equation 3:

    m =4VI+4n1VPTn1PL2

    Klik for at læsemindre

  • Mass of primary increment Klik for at læsemere

    The mass of each primary increment taken by a cross-stream sampler at the discharge from the conveyor belt can be calculated using Equation 4 where:

     

    • C is the flow rate [t/h] on the conveyor belt;
    • b is the cutter aperture width [mm] (b should be ≥ 3 times the nominal top size of the sampled material);
    • VC is cutter speed [m/s].

     

    Equation 4:

    mI=Cb × 1033,6vC

     

    For a cross-belt (hammer) sampler, the mass of primary increment can be calculated using Equation 5 where:

     

    • C is the flow rate [t/h] on the conveyor belt;
    • b is the cutter aperture width [mm] (b should be ≥ 3 times the nominal top size of the sampled material);
    • VB is the belt speed [m/s].

     

    Equation 5:

    mI=Cb × 1033,6vB

     

    During the design of the sampling system, increment masses that are close to those expected to be taken by the system can be used. After implementation of the sampling scheme, the precision of the result can be estimated and adjusted by increasing or decreasing the number of increments in the sample, keeping the same increment mass.

    Klik for at læsemindre

  • Sample division and minimum mass of sample Klik for at læsemere

    Sample Division

     

    To obtain convenient sample masses along the partway from lot to analytical aliquot, the sample is often divided into a number of equal smaller sub-samples, and a residual which is returned to the conveyor.

     

    In order to facilitate a required division while retaining the representative nature of the sample, it may be necessary to crush the material. For this reason, a complete system for extraction of representative samples consists of multistage sampling, particle size reduction and division (sub-sampling) equipment. It is also sometimes beneficial to mix the resulting sub-samples thoroughly after each of these operations, to achieve even higher precision.

     

    Minimum Mass of Sample

     

    For most parameters, the precision of the result is limited by the ability of the sample to represent all the particle sizes in the material being sampled. There is a minimum mass of sample, dependent on the maximum particle size of the material, the type of analysis, the precision required for the parameter concerned and the relationship of that parameter to particle size. Such a relationship applies at all stages of preparation. The attainment of this mass will not, by itself, guarantee the required precision. This is also dependent on the number of increments taken to compound the sample and their variability.

     

    Table 2: Minimum mass of sample (example: coal)

    Klik for at læsemindre

  • Sampling definitions Klik for at læsemere

    Bias (or sampling bias):
    A systematic error between the average analytical sampling result and the true lot concentration i.e. accuracy which originates from inaccurate (biased) sampling equipment and/or sampling processes which leads to results that on average are higher or lower than the true value. Elimination of the sampling bias is the first and key requirement to ensure that any sampling process is correct.

     

    Cut:
    An increment extracted by a sampler.

     

    Composite (Gross) Sample:
    A material sample consisting of all the primary increments taken from a sub-lot.

     

    Division:
    A sub-sampling process, in which the sample is divided into a number of smaller portions, with equal properties.

     

    Lot:
    The complete entity of original material targeted for sampling e.g. industrial batch, ship’s cargo, truck load etc. The lot refers both to the physical, the geometrical form and size as well as the characteristics of the material being subject to sampling and specifically its heterogeneity.

     

    Nominal top size:
    The smallest sieve opening on which not more than 5% of the sample is retained.

     

    Precision:
    Expressed in % and within 95% confidence level.

     

    Primary Increment:
    The amount of material which the primary sampling tool extracts from a material stream, or a stationary lot, in one cut.

     

    Sub-lot:
    Equally sized part of a lot, which properties are to be determined.

     

    Sample:
    The quantity of material consisting of all the increments taken from a lot/sub-lot. A representative sample retains the properties of the lot.

     

    Specimen:
    An extracted mass that is not a result of a representative sampling process. Specimens are not worth analyzing as they cannot give reliable representative information of the lot.

    Klik for at læsemindre

Customer’s overall objectives are met by M&W JAWO Sampling.

Shape logo
Ensures correct pricing of bulk materials (buying and selling)
quality control logo
Quality control of traded goods and compliance with contracts
Increase of operational efficiency
Increase of operational efficiency and check of regulatory requirements

Selected M&W JAWO Sampling customers by sector.

Choose sector

  • Minedrift

  • Mineralforarbejdning og metalraffinering

  • Strøm- og varmeproduktion

  • Olie & Gas

  • Cement

  • Gødning

  • Genbrug, affaldshåndtering og byggematerialer

  • Mad & Lægemiddel

  • EPC Entreprenører / Ingeniørarbejde

Minedrift

No items

Materials we work with

Waste (Household, Industrial and Wastewater sludge)
Affald (husholdnings-, industri- og spildevandsslam)
Aluminium Florid (ALF3)
Aluminium Florid (ALF3)
Aluminium Oxide (Al2O3)
Aluminium Oxide (Al2O3)
Bauxite (Hydrous Aluminium Oxide)
Bauxite (Hydrous Aluminium Oxide)
Biomass
Biomass
Calcium Carbonate (CaCo3)
Calcium Carbonate (CaCo3)
Cement
Cement
Cement Clinker
Cement Clinker
Chromite Ore (FeCr2O4)
Chromite Ore (FeCr2O4)
Coal (hard coal and brown coal)
Coal (hard coal and brown coal)
Coke (including green pet coke and pet coke)
Coke (including green pet coke and pet coke)
Copper Concentrate (Cu)
Copper Concentrate (Cu)
Dust (Industrial, Biomass and Coal etc.)
Dust (Industrial, Biomass and Coal etc.)
Electro Scrap
Electro Scrap
Ferrite (Ferrimagnetic Ceramic Compounds)
Ferrite (Ferrimagnetic Ceramic Compounds)
Ferrosilicon
Ferrosilicon
Fertiliser
Fertiliser
Fly and Bottom Ash
Fly and Bottom Ash
Gold mineralization (Au)
Gold mineralization (Au)
Grain
Grain
Granulates
Granules
Iron (Fe)
Iron (Fe) – iron chips, ore, pellets, scrap, sand, sinter and HBI
Leca Clinker
Leca Clinker
Lignite
Lignite
Limestone
Limestone
Magnesite (MgCO3)
Magnesite (MgCO3)
Nickel Oxide (NiO), Nickel Sulphite (NiS)
Nickel Oxide (NiO), Nickel Sulphite (NiS)
Peat
Peat
Platinum (Pt)
Platinum (Pt)
Polymer
Polymer
Potash (K)
Potash (K)
Powders (pharmaceutical, industrial etc.)
Powders (pharmaceutical, industrial etc.)
Precious metals mineralization
Mineralisering af ædle metaller
Quartz (SiO2)
Quartz (SiO2)
Silicon (Si)
Silicium (Ja)
Sinter
Sinter
Slag
Slag
Sulphur (S), Pelletized Sulphur
Svovl (S), pelleteret svovl
Titanium (Ti) - Ilmenite ore
Titanium (Ti) – Ilmenitmalm
Wood Chips (virgin and waste)
Wood Chips (virgin and waste)
Wood Pellets
Wood Pellets

M&W JAWO Sampling Distributors, Agents and Co-operation partners.

Distributors and Agents.

Brasilien
Del Rey do Brasil
Rodrigo D. Miranda
R. Vila Rica, 825 - Ioja 2 - Padre Eustaquio Belo Horizonte - MG, 30720-380
Canada
Del Rey Partners
Andre Doerfer
14710 Park Almeda Dr., Houston, TX 77047 USA
Finland
Nordagent OY
Mika Rantanen
Rantatie 31, 28450 Vanha-Ulvila
Frankrig
Helle Gjersoe Brouzes
Helle Gjersoe Brouzes
405 Rue Joliot Curie, FR-60410 Saintines, France
Indonesien
PT. Mitra Abadi Teknik
Rocky H.F Rumondor
Japos Graha Lestari Blok B3 No.14, Jurangmangu Barat - Pondok Aren
Indonesien
P.T. Jantan Setia Sakti
Robby Sugiarto
Jl. Pahlawan Seribu, BSD, Tangerang
Kasakhstan
QAZSERVICE i-GROUP
Gabidulla Nagimetov
010000, Nur-Sultan, Koshkarbayeva av. 1/2, (BC "Downtown", Block "Manhattan"), office.204
Kina
Beijing Trontech Scientific Co.
Li Xueyan
Room 1012, 9th floor, site 5, No. 6, FuTong East Street, Chaoyang District, 100102 Beijing, P.R. China
Kina
Tianjin Inventive Technologies
Jack Wei
Rm 917, Bldg F , Hi-tech Information Plaza, No. 8, Huatian Rd, Huayuan Industrial Park, Nankai District, Tianjin, China.
Malaysia
BAFE – Bulk And Fluids Engineering Sdn Bhd
Hans BH Cheng
21, Jalan Cassia Selatan 3/3, Taman Perindustrian Batu Kawan, 14110 Bandar Cassia, Penang, Malaysia
Norge
Retsch Norge AS
Anders Pihl
Trosseveien 15, 6963 Dale i Sunnfjord, Norge
Polen
GRC
Boguslaw Zwolinski
Porajowska 6,  54-107 Wrocław, Poland 
Rusland
Gornye Machiny
Alina Kulikova
660062, Krasnoyarsk , Visotnaya Str., 2, Bld. 1, office 301
Rusland
Impex Industry LLC
Victor Sviridov
197101, Saint-Petersburg, Pevcheskii per 12A, of 607
Sydafrika
O.E.N Enterprises pty ltd
Chesney Brady
Olivedale Office Park. Paracon House. 35 Lima Street. Olivedale, Gauteng, South Africa
Taiwan
Chyuan Yu Ent. Co. Ltd
Joe Wang
12F, No.496 Jiue-Min Rd. San-Min Dist., Kaohsiung City, 807 Taiwan, R.O.C
USA
Del Rey Partners
Andre Doerfer
14710 Park Almeda Dr., Houston, TX 77047 USA
Vietnam
CIMES
Tuan Mai
42 Đại Đồng, Thanh Trì, Hoàng Mai, Hà Nội, Vietnam

Cookie Settings is not available. Cookie Consent is disabled or is just disabled for your country.